混凝土构件在经历火灾时,混凝土的抗压强度及弹性模量,钢筋的屈服强度和弹性模量,以及钢筋和混凝土之间的粘结强度都遭受不同程度的损失。在荷载不变的情况下,混凝土构件的变形也可以用来推断混凝土构件的剩余承载力。火灾后混凝土结构表面会出现大量裂缝,其中有的是混凝土疏松或爆裂引起的,有的是因为温度收缩引起的( 灭火时的温度突然冷却),还有受力引起的爆裂,一般在火焰烧过的部位产生,可以通过目测确定,温度裂缝常位于梁**部和柱**且具有细微和无规律的特征。混凝土表面裂缝检测时,应用裂缝展开示意图将裂缝的宽度、走向长度、分布位置以图的相关形式表示出来,特别应注意构件上的贯穿性裂缝和沿钢筋的纵向撕裂裂缝。裂缝开展宽度大于1.5mm 时,是钢筋混凝土构件的破坏标志之一。某些裂缝在观察时如果仍处于变化状态,就有可能属于危险性大的裂缝,应设置仪器来观察。混凝土构件的变形测量不仅要测挠度,而且应注意构件是否产生出平面的变形。简支受弯构件的跨中挠度达到构件计算长度的1 /50 时,表明该构件己破坏,不能继续使用。
在砌体承重的结构体系中,对旧建筑的加层、改建、加固、可靠度鉴定以及工程事故分析,都需获得砌体的真实强度。
砌体的强度检测方法有哪些:
1 、抽样检测法
主要包括切割法与取芯法,切割法切割的试件宠大,搬运过程中扰动大,造成试验结果的离散性大,耗费大量的人力、财力,只限于庞大砌体工程质量事故处理及对其它方法的校准。取芯法是对芯样作抗压和抗剪试验,对砌体扰动也很大,其试验结果不太一致。
2 、原位检测法
主要包括:扁**法、原位轴压法和原位剪切法。扁**法是采用扁式液压测力器装入开挖的砌体灰缝中进行砌体强度的原位检测方法,它较好地克服了取样法的不足,但设备复杂,允许的极限应变较小,测定砌体的极限强度受到限制。
原位轴压法是对扁**法的改进,测定砌体的极限抗压强度,推算其标准抗压强度,缺点是设备较沉重,使用不便,原位剪切法是在墙体上直接测试砌体通缝的抗剪强度,由于对测试部位有限制,使其应用有一定的局限性
3 、动测综合法
动测综合法是振动反演理论在工程上的应用。在脉动、起振机共振、自由释放或冲击等激振方式的作用下,通过测量砌体结构的频率和振型等参数,根据系统识别理论得到层间刚度,推算出各层砌体轴心抗压强度,不仅能得到砌体的强度,鉴定房屋的质量,便于对房屋进行安全性评定,随着检测仪器技术的改进,算法的优选,结果的精度不断提高,很有发展前途。
4 、微观结构法
声、波、射线等在材料中传播时,会因材料的微观结构的判别而不同,由此可推断出材料的强度。在砌体房屋检测的方法有应力波法和声波法。应力波法测低强和高强砂浆砌体时,精度不高,声波法由于影响因素较多,测试结果不理想,有待进一步提高。
5、 回弹法
采用回弹仪检测结构或构件砼抗压强度是以测区为基本单元来进行的,即在结构或构件上划分若干个测区,每个测区分布16个测点,测完一个测区再测另一个测区,在结构或构件上有序地进行回弹检测。
检测时,回弹仪的轴线应始终垂直于结构或构件的混凝土检测面,缓慢施压,准确读数,速复位。混凝土强度的推定:
1、从测区的16个回弹值中,剔除3个大值和3个小值,然后将余下的10个回弹值平均。
2、如回弹非水平方向且非构件测面时,应先进行角度较正,较正后的回弹值再进行浇注面较正。
3、根据测区的碳化深度值和较正后的回弹值查出各测区的混凝土强度换算值。
各种建筑层出不穷,但是不管什么样的建筑,都会遇到火灾的危险,根据国家相关规定,遭受火灾的厂房等房屋建筑,都要经过厂房检测,进行结构安全检测,确保安全的情况才可以继续使用,或者通过检测,对厂房加固提供专业的建议和方案,厂房等房屋建筑进行加固后,也能够达到厂房等房屋建筑使用的要求。
从经济的角度说,遭受火灾厂房等房屋建筑在不可以使用的情况下,通过房屋检测,进而进行加固,要比拆除重建成本低得多,这样,就可以节省投资,对厂房二次利用。并且,有保险赔偿的情况下,也需要通过厂房检测的报告,对厂房的受灾情况进行确定。
那么,什么样的房子,经历大磨难后,还有继续使用的可能性呢?这就涉及到了厂房等房屋建筑灾后房屋检测。
以厂房等房屋建筑火灾后安全性检测为例。日前,我司对位于上海金山区的某公司办公楼进行了这方面的检测。这是一家化工企业,火灾发生在中午时分,起火的原因是仪器设备未设置有效的静电导除装置,当工人使用塑料桶分装化学易燃液体时,仪器设备产生静电积聚,一刹那间,一个火花迸出,便引燃了化学液体。火势迅猛,一发不可收拾,*蔓延,覆盖了整个厂房。过火面积达到了1500个平方,幸运的是,在此次事件中,没有人员伤亡。
与这生产车间相毗邻的是一座办公楼,问题就出在这里,当业主准备继续使用这座办公楼并办理相关产证的时候,遇到了一个瓶颈,那就是,火烧后的厂房,对于这座办公楼的影响如何,会不会有安全方面的隐患,对此**主管部门提出了疑问。于是,这家公司找到了我们,我们人员,及检测单位一起接受业主的委托后,派遣检测人员很到现场实地勘察。
经过和业主的沟通以及现场实际调查,发现虽说这座办公楼要检测安全性,但是因为是火灾后影响,所以又不能单纯地以安全检测为主。这一点很重要,在后续的检测报告编写中,必然要考虑到火灾因素的影响。
像这样的火灾后检测,既有厂房安全性性检测的内容,又有厂房火灾后检测的内容,在做现场房屋鉴定检测的时候,主要内容不外乎以下几点:
房屋灾后检测
(1)厂房建筑、结构概况调查和复核;
(2)厂房建筑、结构平面布置图复核;
(3)厂房使用情况调查;
(4)构件材料强度检测;
(5)厂房变形检测;
(6)厂房结构安全性计算;
(7)调查火灾过程、燃烧范围、过火面积,通过现场残存材料的状态分析判断火灾现场的温度;
(8)过火后结构损伤情况调查,主要包括混凝土表面色泽、锤击反应、混凝土剥落、露筋、表层混凝土疏松情况,钢构件的变形挠曲情况;
(9)采用钻芯法抽样检测过火区不同位置的混凝土强度;
(10)对过火区混凝土构件和钢构件进行初步鉴定评级。
对于一场大火,除了搞清起火的原因外(这主要是消防报告的主要内容),对于灾后检测来说,火场的温度分析,火灾对构件材料强度的影响以及过火区构件的损伤等级,是为重要的核心内容。
根据《火灾后建筑结构鉴定标准》(CECS 252:2009),依据构件烧灼损伤、变形、开裂,火灾后构件初步鉴定评级可分为4类(火灾后结构构件损伤状态不评Ⅰ级):
状态Ⅱa——轻微或未直接遭受烧灼作用,结构材料及结构性能未受或仅受轻微影响,可不采取措施或仅采取提高耐久性的措施。
状态Ⅱb——轻度烧灼,未对结构材料及结构性能产生明显影响,尚不影响结构安全,应采取耐久性或局部处理外观修复措施。
状态Ⅲ——中度烧灼,尚未破坏,显着影响结构材料或结构性能,明显变形或开裂,对结构安全性或正常使用性产生不利影响,应采取加固或局部更换措施。
状态Ⅳ——破坏,火灾中或火灾后结构倒塌或构件塌落;结构严重烧灼损坏、变形损坏或开裂损坏,结构承载能力丧失或大部丧失,危及结构安全,必须或必须立即采取安全支护、加固或拆除更换措施。